詹学伟
詹学伟
Published on 2025-11-13 / 2 Visits
0
0

SAA-多模型同时使用

一、说明

本章节主要实现在同一个项目中,同时使用不同的大模型,比如同时使用deepseek和qwen。

另外本章节代码是基于前面几篇SSA系列文章,所使用的都是同一个父工程的聚合工程。

二、POM依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.example</groupId>
        <artifactId>ssa</artifactId>
        <version>1.0-SNAPSHOT</version>
    </parent>

    <artifactId>ssa-streaming</artifactId>
    <packaging>jar</packaging>

    <name>ssa-streaming</name>
    <url>http://maven.apache.org</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <maven.compiler.source>17</maven.compiler.source>
        <maven.compiler.target>17</maven.compiler.target>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>com.alibaba.cloud.ai</groupId>
            <artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.34</version>
            <optional>true</optional>
        </dependency>

        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.16</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
    </dependencies>


    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>17</source>
                    <target>17</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>${spring-boot.version}</version>
            </plugin>
        </plugins>
    </build>
</project>

三、配置文件

# 启动端口设置
server.port=8083
# 字符编码设置,防止乱码
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
# 项目名称
spring.application.name=ssa-streaming
# AI 配置文件
spring.ai.dashscope.api-key=sk-xxxxxxxxxxxxxxxxxxxxxxxxxxx
spring.ai.dashscope.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1
spring.ai.dashscope.chat.options.model=qwen3-max

四、配置类

package org.example.config;

import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * @author zhanxuewei
 */
@Configuration
public class SsaLLMConfig {


    @Value("${spring.ai.dashscope.api-key}")
    private String apiKey;

    private static final String MODEL_DEEPSEEK = "deepseek-v3";
    private static final String MODEL_QWEN = "qwen-max";

    @Bean(name = "deepseek")
    public ChatModel deepseek() {
        return DashScopeChatModel.builder()
                .dashScopeApi(DashScopeApi.builder().apiKey(apiKey).build())
                .defaultOptions(DashScopeChatOptions.builder().withModel(MODEL_DEEPSEEK).build())
                .build();
    }

    @Bean(name = "qwen")
    public ChatModel qwen() {
        return DashScopeChatModel.builder()
                .dashScopeApi(DashScopeApi.builder().apiKey(apiKey).build())
                .defaultOptions(DashScopeChatOptions.builder().withModel(MODEL_QWEN).build())
                .build();
    }

    @Bean(name = "deepseekChatClient")
    public ChatClient deepeekChatClient(@Qualifier("deepseek") ChatModel deepseek) {
        return ChatClient.builder(deepseek)
                .defaultOptions(ChatOptions.builder().model(MODEL_DEEPSEEK).build())
                .build();
    }

    @Bean(name = "qwenChatClient")
    public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen) {
        return ChatClient.builder(qwen)
                .defaultOptions(ChatOptions.builder().model(MODEL_QWEN).build())
                .build();
    }

}

五、控制层

package org.example.controller;

import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@Slf4j
@RestController
public class StreamingController {

    @Resource(name = "deepseek")
    private ChatModel deepseekChatModel;

    @Resource(name = "qwen")
    private ChatModel qwenChatModel;

    @Resource(name = "deepseekChatClient")
    private ChatClient deepseekChatClient;

    @Resource(name = "qwenChatClient")
    private ChatClient qwenChatClient;

    /**
     * 调用模型
     *
     * @param msg
     * @return
     */
    @GetMapping("/text/chat")
    public String textChat(@RequestParam(name = "msg", defaultValue = "你是谁?") String msg) {
        String content = deepseekChatClient
                .prompt(msg)
                .call()
                .content();
        log.info("content: {}", content);
        return content;
    }

    @GetMapping("/stream/chat")
    public Flux<String> streamChat(@RequestParam(name = "message", defaultValue = "你是谁?") String message) {
        log.info("message: {}", message);
        Flux<String> result = deepseekChatModel.stream(message);
        log.info("result: {}", result);
        return result;
    }
}

六、测试


Comment